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Symmetry

1 The curve is symmetric about x-axis if the power
of y occurring in the equation are all even,
i.e.f (x ,−y) = f (x , y).
e.g.x = y 2

2 The curve is symmetric about y-axis if the
powers of x occurring in equation are all even,
i.e.f (−x , y) = f (x , y).
e.g.y = x2
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Continue...

3 The curve is symmetric about the line y= x, if
on interchanging x and y, the equation remains
unchanged, i.e. f (y , x) = f (x , y).
e.g.x2 = y 2

4 The curve is symmetric in opposite quadrants or
about origin if on replacing x by –x and y by –y,
the equation remains unchanged,
i.e.f (−x ,−y) = f (x , y).
e.g.x2 = y 2
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Origin

1 The curve passes through the origin if there is
no constant term in the equation.

2 If curve passes through the origin, the tangents
at the origin are obtained by equating the lowest
degree term in x and y to zero.

3 If there are two or more tangents at the origin, it
is called a node, a cusp or an isolated point if
the tangents at this point are real and distinct,
real and coincident or imaginary respectively
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Point of intersection

1 The point of intersection of curve with x and y
axis are obtained by putting y = 0 andx = 0
respectively in the equation of the curve.

2 Tangent at the point of intersection is obtained
by shifting the origin to this point and then
equating the lowest degree term to zero.
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Special Points

1 Cusps: If tangents are real and coincident then
the double point is called cusp.

2 Nodes: If the tangents are real and distinct
then the double point is called node.

3 Isolated Point: If the tangents are imaginary
then double point is called isolated point.
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Asymptotes

1 Asymptotes parallel to x-axis are obtained by
equating the coefficient of highest degree term
of x in the equation to zero.

2 Asymptotes parallel to y-axis are obtained by
equating the coefficient of highest degree term
of y in the equation to zero.
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Region of Presence

1 This region is obtained by expressing one
variable in terms of other, i.e., y=f(x)[or x=f(y)]
and then finding the values of x (or y) at which
y(or x) becomes imaginary. The curve does not
exist in the region which lies between these
values of x (or y).
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Trace the cissoid y 2(2a − x) = x3

• Symmetry: The power of y in the equation of
curve is even so the curve is symmetric about x-
axis.

• Origin: The equation of curve dose not contain
any constant term so the curve passes through the
origin.
To find tangents at the origin equating lowest
degree term to zero,

2ay 2 = 0

=> y 2 = 0
=> y = 0

Thus x-axis be a tangent.
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Continue...

• Points of intersection: Putting y = 0, we get
x = 0. Thus, the curve meets the coordinate axes
only at the origin.

• Asymptotes:
a) Since coefficient of highest power of x is
constant, there is no parallel asymptote to x- axis.
b) Equating the coefficient of highest degree term
of y to zero, we get

2a − x = 0

=> x = 2a is the asymptote parallel to y-axis.
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Continue...

• Region: We can
write the equation of
curve like y 2 = x3

(2a−x)

• The value of y
becomes imaginary
when x < 0 or
x > 2a.

• Therefore, the curve
exist in the region
0 < x < 2a
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